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Granular Materials

Properties:

e Ensembles of macroscopic particles
e Interaction - hard core exclusion

o Collisions - dissipative

Interesting collective phenomena:

e Phase transitions Urbach 98
e Pattern formation Swinney 95
e Solitary waves Umbanhowar 95
e Force chains Coppersmith 95

e Size segregation




Compaction

e Uniform, simple system
e Probes the density - a fundamental quantity
e Slow density relaxation Knight 95
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e Parameters depend on I only

e Robust behavior - independent of grain
type, grain size, container geometry, etc.

What causes logarithmic relaxation?




Heuristic picture
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Assumption: Cooperative rearrangement
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Volume exclusion causes slow relaxation




The “parking” model
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e 1D Adsorption-desorption process

e Adsorption subject to volume constrains
e Desorption not restricted

o Detailed balance satisfied

e System reaches equilibrium steady state

lgnores: mechanical stability

Realistic: excluded volume interaction



Theory

P(z,t) = Density of z-size voids at time ¢

1= /dx(:v+ 1)P(z,t) p(t) = /d:cP(x,t)

Master equation:

az;gx) = 2ky /x +cllyP(y) —2k_P(x)

+0(2-1) [% /0 Ay P(y)P(i—1—y) — k+(:c—1)P(x)]

Density rate equation:
Op(t)

—o = —hop(t) + k+/1daf(:v —1)P(z,1)

Convolution term assumes voids_are
uncorrelated (exact in equilibrium)



Exact Equilibrium Properties

Exponential void distribution

Sticking Probability

S(poc) = exp [—1 fO;oo]

Gaussian Density Distribution

1 (p = Poo)’
exp | —
V2mo? 202

Poo(p) =

Variance decreases with density
0% = poo(l = poc)’/L =2

Volume exclusion dominates at high densities




Relaxation Properties

Quasistatic (near equilibrium) approximation

ag_it) = —k_p(t) + k(1 —p)exp [_Tpp]

| Desorption-limited case (k_ — 0)

1
In k_|_t

pt) =1

Il Finite k_ 7 = (L/k_poo)o? = (1 — peo)?/k_

Slow density relaxation




The sticking probability

Total adsorption rate

/1da:(x D) Po(z) = k(1 — poo) exp [_ Poc ]

Reduced adsorption rate k. — kis(p)

Sticking probability

Heuristic picture is exact in 1D

obbioe

Cooperative behavior in dense limit




Spectrum of density fluctuations

Definition

2

PSD(f) = | [ dre " (p(0)p(t + 1)

Leading behavior

0 f<fr
PSD(f) = f* fi<f<fu
fTP fu<f

For noninteracting dilute case, linear theory,
PSD(f) oc [1+ (f/fo)?], with fo =771 =ky + k-

In general, still open problem. Reasonable
that fL ~ k_ and fH ~ k'_|_

Similar noise spectrum for finite system
Monte Carlo and experimental data



Conclusions |

e Compaction dominated by exponentially
rare grain size voids

e Growing time scales associated with
cooperative bead rearrangements

e Argument is general - should hold for
aspherical grains or horizontal tapping

e Gaussian density fluctuations



Vibrated Knot Experiment

o t = 0: knot placed at chain center

e Parameters:

— Number of monomers: 30 < N < 200
— Minimal knot size: Ny = 15

e Driving conditions:

— Frequency: v =13Hz
— Acceleration: T' = Aw?/g = 2.37

e Measurement: opening time ¢

Questions

1. Average opening time 7(N)?

2. Survival probability S(t, N)?
Distribution of opening times R(t, N)?



Motivation

Topological constraints, entanglements:

e Reduce accessible phase space
e Involve large relaxation time scales

o Affect dynamics, flow

ne~ T~ N’
Relevance:
o Polymers: melts, rubber, gels
e DNA, biomolecules
Difficulties:
e Hard to observe directly
e Slow dynamics

e Finite size effects



Granular “Polymers”

Mechanical bead-spring:

U({Rz}) = Vo Z 5(RZ — RJ) + % (Rz — Ri—|—1)2
1#] 1

e Beads interact via hard core repulsions
e Rods act as springs (nonlinear, dissipative)
e Inelastic collisions: bead-bead, bead-plate

o Vibrating plate supplies energy
Advantages:

e Number of “monomers’ can be controlled

e Topological constraints: can be prepared,
observed directly



The Average Opening Time
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Opening time is diffusive




The Survival Probability

e S(t,N) Probability knot “alive” at time ¢

e R(t,N) Probability knot opens at time ¢
d

e S(t,N) obeys scaling
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7 only relevant time scale




Theoretical Model

A Y X

Assumptions:

e Knot = 3 exclusion points
e Points hop randomly
e Points move independently (no correlation)

e Points are equivalent (size = Ny/3)
3 Random Walk Model:

e 1D walks with excluded volume interaction

e first point reaches boundary — knot opens



Diffusion in 3D

e Continuum limit z; — oo, N — o0
e Dimensionless time t — Dt/[(N — Ny)?],
Space (xaya Z) — (xlax27x3)/N

1<5131<£U§<2133<N NO —> O<w<y<z<1

ot
e Boundary condltlons
Absorbing: P| _,=P| _, =0
Reflecting: (0, )P\QU _y, = (0, —0,)P|,—. =0

e Initial conditions P‘t =0 (2—0)0(y—x0)0(2—x0)

e Survival probability

1 1 1
=/ dx/ dy/ dz P(xz,y,z,t)
0 T Y

3 walks in 1D = 1 walk in 3D




Experiment vs. Theory

e Work with scaling variable z =t/7 ((z) = 1)
e Combine different data sets (5000 pts)

e Fluctuations o2 = (22) — (2)?

Texp = 0.62(1), Tneory = 0.63047 (< 2%)
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Large Exit Times

e Largest decay time dominates

o Large time tail is exponentially small

F(2) ~e P? Zz — 0

o Decay coefficient

Boxp = 1.65(2)  Qneory = 1.66440  (1%)
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Small Exit Times

o Exponentially small (in 1/2) tail

1 — F(2) ~ z1/2e70/2 z—0

e Decay coefficient

Qexp = 1.2(1), Brneory = 1.11184 (10%)
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Larger discrepancy




Conclusions |l

Opening times are diffusive
Distributions obey scaling
Extreme statistics are exponential

Macroscopic observables (¢, S(t)) reveals
microscopic dynamics

Knot dynamics determined by 3 diffusing
exclusion points

Outlook Il
7(IN) gives size of constraint N
S(t, N) gives number of constraints m
Is motion uncorrelated?

Is a more detailed model necessary?



Possibilities

Granular Matter

e Phase transitions in monolayers
o Compaction

e Segregation

e Stress Propagation

Polymers

e Chain dynamics
e Entanglements

e Phase separation



Inelastic collisions

e Relative velocity reduced by r =1 — 2¢
AV = —rAv
/

vV = v —€eAv

e Energy dissipation AE o« —e(Av)?

r=0 r=1
€=1/2 e=0

Freely evolving gas

e N point particles in 1D ring.
Random velocity distribution.
Typical velocity vg. Typical distance xy.

e Dimensionless variables © — x/xq, t — tvg/x
— “Temperature” T'(t) = (v3(t)) — (v(t))?

— Characteristic time/length scales.
— Continuum theory?



Motivation: Granular Gases

o Applications:
— Granular materials: powders, grains.
— Geophysical flows.

— Large scale formation in universe.

o Characteristics:
— Hard sphere interactions.

— Dissipative collisions.

o Experimental observations (1D, 2D, 3D):
— Density inhomogeneities.
— Velocity correlations, non-Gaussian stat

— Phase transitions: order-disorder.



Mean Field Theory

e Energy dissipation
AT x —e(Av)?

e Collision frequency

At ~ 0/ Av ~ (Av)™?

e Assuming a uniform gas

v o~ Av~TYE A<

dT’ AT
— — x —€(Av)? x —eT3/?
X Ay e(Av)? ox —e

e Cooling law Haff 83

1 t < el

T = AEt)_Q ) {62152 t> e

Holds only in early homogeneous phase




The Inelastic Collapse e o0, vouns 01
e 3 particles clump if r < r. =7 — 4v/3 = 0.07

e Finite time singularity: Cluster formation
via infinite collisions when N > N.(r).

e Estimating the critical mass:

12

V1 1—c¢€

12

UN 1 — Ne

e Particle passes through if N < N_(e) ~ ¢!

e N. ~ ¢! = collapse always encountered
in the thermodynamic limit N — oo.

Particles coalesce rather than pass through




The Sticky Gas (r = 0)

Multiparticle aggregate of typical mass m

Momentum conservation

Pm:iPz-

= Pwml/Q, v~ m~ /2

Mass cétiservation

p=cm=const = c~m

1

Dimensional analysis [cv] = [t] !

m o~ t2/3

Final state 1 aggregate with m = N

T(t) ~ <

/

1 t < 1;
t723 1<t < N3/2

(N N32 <t



Monotonicity

o T'(e,t) decreases monotonically with ¢, ¢

Sticky gas r =0 (e = 1/2) is a lower bound




Crossover Picture

o Universal Cooling law T'(t) ~ t=2/3

(
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Asymptotic behavior is independent of r




Early = Elastic gas (r = 1)

LA,

Intermediate = Inelastic gas (r = 0.9)

Late = Sticky gas (r = O)
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r = 0 is fixed point




The Velocity Distribution
o Self similar distribution
P(v,t) ~ t1/3®(vt!/3)
e Large velocity tail
®(z) ~ exp(—const. x 2%) z>1
e Simulation results » = 0, 0.5, 0.9

1
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0.2

P(r,v,t) is function of z = vt'/3 only




The Inviscid Burgers Equation

" W

e Nonlinear diffusion equation

Vi + VVp = Vg v — 0
e Transform to linear diffusion equation
Ut = Vlgpy = v=—2v(lnu),

e Sawtooth (shock) velocity profile

L — Q(ZC,t)
t
e Shock collisions conserve mass & momentum

v(x,t) =

e Describes “sticky gas” » =0  Zeldovich RmP 89

Burgers equation = sticky gas = inelastic gas




Predictions verified in 1D

o Velocity statistics v ~ ¢t~1/3

e Discontinuous (shock) velocity profile

e Slope = t~1 (simulation with r = 0.99)
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Formation of Singularity

Collapse = finite time singularity in v; + vv, =0




imensions

Higher D

0, then v; +v-Vv = vV2v predicts:
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Conclusions Il

Asymptotic behavior:

o Governed by cluster-cluster coalescence
e Independent of restitution coefficient

e Described by inviscid Burgers equation

Outlook

e Velocity & spatial correlations

e Predictions in higher dimensions



